Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We present the first 3D kinematic analysis of multiple stellar populations (MPs) in a representative sample of 16 Galactic globular clusters (GCs). For each GC in the sample, we studied the MP line-of-sight, plane-of-the-sky and 3D rotation, and velocity distribution anisotropy. The differences between first-population (FP) and second-population (SP) kinematic patterns were constrained by means of parameters specifically defined to provide a global measure of the relevant physical quantities and to enable a meaningful comparison among different clusters. Our analysis provides the first observational description of the MP kinematic properties and of the path they follow during their long-term dynamical evolution. In particular, we find evidence of differences between the rotation of MPs along all velocity components with the SP preferentially rotating faster than the FP. The difference between the rotation strength of MPs is anticorrelated with the cluster dynamical age. We also observe that FPs are characterized by isotropic velocity distributions at any dynamical age probed by our sample. On the contrary, the velocity distribution of SP stars is found to be radially anisotropic in dynamically young clusters and isotropic at later evolutionary stages. The comparison with a set of numerical simulations shows that these observational results are consistent with the long-term evolution of clusters forming with an initially more centrally concentrated and more rapidly rotating SP subsystem. We discuss the possible implications these findings have on our understanding of MP formation and early evolution.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract The Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Gran Sasso (LNGS) is one of the largest underground physics laboratory, a very peculiar environment suited for experiments in Astroparticle Physics, Nuclear Physics and Fundamental Symmetries. The newly established Bellotti Ion Beam facility represents a major advance in the possibilities of studying nuclear processes in an underground environment. A workshop was organized at LNGS in the framework of the Nuclear Physics Mid Term Plan in Italy, an initiative of the Nuclear Physics Division of the Instituto Nazionale di Fisica Nucleare to discuss the opportunities that will be possible to study in the near future by employing state-of-the-art detection systems. In this report, a detailed discussion of the outcome of the workshop is presented.more » « less
- 
            Abstract Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen.more » « less
- 
            Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
